详细信息
3个小流域红豆树天然居群的遗传多样性和遗传分化 被引量:7
Genetic Diversity and Genetic Differentiation of Different Populations of Ormosia hosiei in Three Watersheds
文献类型:期刊文献
中文题名:3个小流域红豆树天然居群的遗传多样性和遗传分化
英文题名:Genetic Diversity and Genetic Differentiation of Different Populations of Ormosia hosiei in Three Watersheds
作者:李峰卿[1,2,3] 周志春[2] 谢耀坚[1]
第一作者:李峰卿
机构:[1]国家林业局桉树研究开发中心;[2]中国林科院亚热带林业研究所浙江省林木育种技术研究重点实验室;[3]中国林科院亚热带林业实验中心
年份:2017
卷号:15
期号:10
起止页码:4263-4274
中文期刊名:分子植物育种
外文期刊名:Molecular Plant Breeding
收录:CSTPCD;;北大核心:【北大核心2014】;CSCD:【CSCD2017_2018】;
基金:浙江省农业(林木)新品种选育重大科技专项重点课题(2016C02056-3);中国林科院亚热带林业研究所自主立项课题(RISFZ-2016-01)共同资助
语种:中文
中文关键词:红豆树;小流域;天然居群;SSR;遗传多样性;遗传分化
外文关键词:Ormosia hosiei, Small watershed, Natural populations, SSR, Genetic diversity, Genetic differentiation
分类号:S
摘要:红豆树(Ormosia hosiei Hemsl.et Wils)是中国特有的珍稀濒危植物,但其遗传信息了解较少。为进一步完善红豆树遗传背景研究,采用SSR分子标记技术对江西省资溪县泸溪河、福建省柘荣县茜洋溪和浙江省龙泉市瓯江上游等3个小流域的9个红豆树天然居群的遗传多样性及遗传分化进行分析。本研究利用12对SSR引物在193个个体中共检测到171个等位基因,每个位点平均14.3个。不同小流域间和同一小流域内(西溪支流)不同居群的遗传多样性皆维持较高水平(HE>0.720),但也均存在一定程度的近交(Fis>0);不同流域的遗传多样性由高到低顺序:OJ(HE=0.835)、XYX(HE=0.829)、LXH(HE=0.796);西溪支流内不同居群间遗传多样性也存在一定的差异,如处在柘荣茜洋溪-西溪中游的富溪居群其遗传多样性水平最高(HE=0.771),而其上游的东源和下游的宅中居群的遗传多样性则相对较低。不同水平(流域和居群水平)的AMOVA分析表明,遗传变异主要存在于流域内和居群内,流域间或流域内居群间的遗传分化皆属于中等程度。基于遗传距离的聚类分析和Structure分组分析均表明,3个小流域的9个天然居群可归为2大群组,其中江西泸溪河小流域(LXH)和福建茜洋溪小流域(XYX)的6个居群(JXMTS,JXBHQ,FJDY,FJFX,FJCP和FJZZ)归为一群组,而浙江瓯江小流域的3个居群(ZJFX-1,ZJFX-2和ZJBD)则单独归为另一群组,且第一群组内居群间还存在较明显的遗传分化。因此,研究认为,研究的3个小流域红豆树天然居群维持较高的遗传多样性,这可能是其生境片段化前的反映。第一群组内(LXH和XYX)的遗传分化可能与居群大小、分布及生境有关,而第二群组内(瓯江上游流域)的居群则起源于一个较大的居群。
Ormosia hosiei is specific and rare or endangered species in China, but the genetic information of that was not known much. This study selected 9 populations of Ormosia hosiei from LXH, XYX and OJ in Jiangxi,Fujian and Zhejiang Provinces respectively in three watersheds to analyse via the SSR molecular markers and so as to improve the studies of genetic background of the species. In this study, we detected 171 alleles in 193 leaf samples with 12 primers, and the average locus was 14.3. Although there was a certain degree of inbreeding(Fis0), the genetic diversity maintained at a high level between watersheds and populations in the different watersheds and the same basin(Xixi branch)(HE0.720). The order of genetic diversity in different watersheds was OJ(HE=0.835)XYX(HE=0.829)LXH(HE=0.796), and the genetic diversity of populations in the same basin still had certain differences. For example, FJFX population had the highest genetic diversity(HE=0.771), FJDY and FJZZ with relative low genetic diversity. The analysis of molecular variance(AMOVA) in hierarchical levels(watersheds and populations) indicated that the genetic variation mainly existed in watershed and population which were belonged to moderate degree genetic differentiation. Cluster analysis upon UPGMA and assignments analysis by STRUCTURE showed that the 9 populations were formed by two groups. The 6 populations(JXMTS, JXBHQ,FJDY, FJFX, FJCP, FJZZ) of Jiangxi's LXH watershed and Fujian's XYX watersheds were classified to one group,and the 3 populations(ZJFX-1, ZJFX-2, ZJBD) of Zhejiang's OJ watersheds were classified to another one group.What' more, the populations of the first group still had obvious genetic variation. Therefore, the results indicated that the 3 watersheds maintained the high levels of genetic diversity, which could be a reflection before the habitat fragmentation. The genetic variation among populations in the first group was related to the population size,distribution and habitat, while the 3 populations in the second group might originate from a larger population.
参考文献:
正在载入数据...