登录    注册    忘记密码

详细信息

Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of Suaeda Salsa Revealed by 16S rRNA Genes  ( SCI-EXPANDED收录)   被引量:24

文献类型:期刊文献

英文题名:Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of Suaeda Salsa Revealed by 16S rRNA Genes

作者:Yu, Yilei[1,2] Zhang, Yinghua[3] Zhao, Nana[1,2] Guo, Jia[1,2] Xu, Weigang[1,2] Ma, Muyuan[1,2] Li, Xiaoxia[1,2]

第一作者:Yu, Yilei;于一雷

通信作者:Zhao, NN[1];Zhao, NN[2]|[a0005f3a8634646e8b122]赵娜娜;

机构:[1]Chinese Acad Forestry, Inst Wetland Res, Beijing 100091, Peoples R China;[2]Beijing Key Lab Wetland Serv & Restorat, Beijing 100091, Peoples R China;[3]Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China

年份:2020

卷号:17

期号:5

外文期刊名:INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH

收录:;WOS:【SSCI(收录号:WOS:000522389200011),SCI-EXPANDED(收录号:WOS:000522389200011)】;

基金:This research was funded by the Basic Research Project (CAFINT2014C13) and the Government Funded Abroad Program (CAFYBB2019GC001-22) of the Chinese Academy of Forestry.

语种:英文

外文关键词:crude oil pollution; bacterial community; soil rhizosphere

摘要:Crude oil pollution of soil is a serious environmental issue, and bioremediation using plants and microorganisms is a natural and sustainable method for its restoration. Pot incubation of a two-factor randomized block (plants with two levels, and crude oil with three levels) was designed to investigate the rhizosphere bacterial community of Suaeda salsa (L.) Pall. Crude oil contamination of soil was studied at different levels: 2 g/kg (low), 4 g/kg (medium), and 6 g/kg (high) levels. In this study, the physicochemical properties of the collected rhizosphere soil were analyzed. Moreover, the soil bacteria were further identified using the 16S rRNA gene. The effects of S. salsa and crude oil and their interaction on the physiochemical properties of the soil and crude oil degradation were found to be significant. Crude oil significantly influenced the diversity and evenness of bacteria, while the effects of S. salsa and interaction with crude oil were not significant. Proteobacteria were found to be dominant at the phylum level. Meanwhile, at the genera level, Saccharibacteria and Alcanivorax increased significantly in the low and medium contamination treatment groups with S. salsa, whereas Saccharibacteria and Desulfuromonas were prevalent in the high contamination treatment group. High crude oil contamination led to a significant decrease in the bacterial diversity in soil, while the effects of S. salsa and its interaction were not significant. Despite the highest abundance of crude oil degradation bacteria, S. salsa reduced crude oil degradation bacteria and increased bacteria related to sulfur, phosphorus, and nitrogen cycling in the low and high contamination group, whereas the opposite effect was observed for the medium contamination treatment group. The abundance of most crude oil degradation bacteria is negatively correlated with crude oil content. Nitrogen cycling bacteria are sensitive to the total nitrogen, total phosphorus, ammonia nitrogen, and nitrate nitrogen, and pH of the soil. Sulfur cycling bacteria are sensitive to aromatic hydrocarbons, saturated hydrocarbons, and asphaltene in soil. This research is helpful for further studying the mechanism of synergistic degradation by S. salsa and bacteria.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心