详细信息
文献类型:期刊文献
中文题名:基于计数模型方法的林分枯损研究
英文题名:Predicting Stand-Level Mortality with Count Data Models
作者:张雄清[1,2] 雷渊才[1] 雷相东[1] 陈永富[1] 冯淼[3]
第一作者:张雄清
机构:[1]中国林业科学研究院资源信息研究所;[2]中国林业科学院林业研究所;[3]国家知识产权局专利局专利审查协作北京中心
年份:2012
卷号:48
期号:8
起止页码:54-61
中文期刊名:林业科学
外文期刊名:Scientia Silvae Sinicae
收录:CSTPCD;;Scopus;北大核心:【北大核心2011】;CSCD:【CSCD2011_2012】;
基金:林业公益性行业专项(201104006;201204510)
语种:中文
中文关键词:林分枯损;Poisson回归模型;负二项模型;零膨胀模型;Hurdle模型
外文关键词:stand mortality; Poisson model; negative binomial model; zero-inflated model; Hurdle model
分类号:S758.5
摘要:利用吉林省汪清林业局金沟岭林场落叶松林分连续观测数据,分别利用Poisson回归模型、负二项模型、零膨胀模型和Hurdle模型拟合林木枯损株数,并通过AIC值以及Vuong检验对这些模型进行详细分析比较。结果表明:Poisson回归模型不适用于模拟林木枯损株数,负二项回归模型相对于Poisson回归模型比较适用;但是对于零枯损过多的数据,这2类模型拟合效果较差。零膨胀模型和Hurdle模型对这类数据有很好的解决办法,其中,零膨胀负二项模型和Hurdle-NB模型拟合效果优于其他几种模型,且Hurdle-NB模型略好于零膨胀负二项模型。
Stand mortality is a very important variable for describing the stand characters. Based on the stand mortality data from permanent plots of Larix spp. in Wangqing Forest Farm, Poisson model, negative binomial model, zero-inflated model and Hurdle model were introduced to model the stand mortality stems. And the best model was selected through AIC and Vuong test. Results showed that: Poisson model was not suitable for stand mortality, and negative was superior to the Poisson model. But both of them were not competent for the over-dispersion data of stand mortality. Zero-inflated model and Hurdle model were fitted into the data. Additionally, zero-inflated negative binomial model(ZINB) and Hurdle-NB model outperformed than other models. Furthermore, The Hurdle-NB model was a little better than ZINB model.
参考文献:
正在载入数据...