登录    注册    忘记密码

详细信息

高光谱数据森林类型统计模式识别方法比较评价     被引量:30

Validation of Statistic Based Forest Types Classification Methods Using Hyperspectral Data

文献类型:期刊文献

中文题名:高光谱数据森林类型统计模式识别方法比较评价

英文题名:Validation of Statistic Based Forest Types Classification Methods Using Hyperspectral Data

作者:陈尔学[1] 李增元[1] 谭炳香[1] 梁毓照[2] 张则路[2]

第一作者:陈尔学

机构:[1]中国林业科学研究院资源信息研究所;[2]吉林省汪清林业局

年份:2007

卷号:43

期号:1

起止页码:84-89

中文期刊名:林业科学

外文期刊名:Scientia Silvae Sinicae

收录:CSTPCD;;Scopus;北大核心:【北大核心2004】;CSCD:【CSCD2011_2012】;

基金:"863"课题资助(2002AA133050)

语种:中文

中文关键词:EO-1;Hyperion;高光谱;统计模式识别;森林类型

外文关键词:EO-1 Hyperion; hyperspectral; statistic pattern recognition; forest type

分类号:TP79

摘要:在我国东北地区获取EO-1Hyperion高光谱数据,以高空间分辨率的全色SPOT-5数据及其影像分割结果为辅助,通过外业测量获取真实可靠的森林类型空间分布数据。以这些数据为地面实状数据,对现代先进的统计模式识别方法用于森林类型识别的效果进行比较评价,总结可以有效解决有限样本条件下高光谱分类问题的基于统计模式识别的森林类型分类技术方案。评价结果表明:对高光谱数据进行降维处理,并采用更加有效的二阶统计量估计方法,进而应用将空间上下文信息和光谱信息相结合的分类算法,如ECHO,可以有效提高高光谱数据森林类型的识别精度。
With much higher spectral resolution, hyperspectral remote sensing data has higher potential capability to identify land cover types than traditional muhispectral data. But under limited training sample size, increased dimension of remote sensing data means decreased samples/dimension ratio, which can lead to low classification accuracy if common statistic based pattern classification methods were used. One scene of EO-1 Hyperion hyperspectral data was acquired for the test site in northeast of China. In order to aid for ground true information collection, 2.5 m SPOT-5 PAN image was segmented into self-closure polygons. Detailed ground true data was surveyed according to the boundary of each polygon. Based on these ground true data, the hyperspectral data was used to validate the forest types identification accuracy of several advanced statistic classification methods. Finally, one classification scheme being able to effectively solve the small train sample problems for forest type classification using hyperspectral data was suggested. It was shown that forest type classification accuracy can be improved if advanced feature extraction method, much more effective second order statistic parameter estimation method, and contextsensitive samples classifier such as ECHO was applied.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心