详细信息
杂原子掺杂生物质基碳材料电催化CO_(2)还原性能理论模拟研究
Theoretical Simulation of Electrocatalytic CO_(2) Reduction Performance of Heteroatom-doped Biomass-based Carbon Materials
文献类型:期刊文献
中文题名:杂原子掺杂生物质基碳材料电催化CO_(2)还原性能理论模拟研究
英文题名:Theoretical Simulation of Electrocatalytic CO_(2) Reduction Performance of Heteroatom-doped Biomass-based Carbon Materials
作者:赵钰莹[1] 徐茹婷[1] 范孟孟[1,2] 孙康[1] 蒋剑春[1,2]
第一作者:赵钰莹
机构:[1]中国林业科学研究院林产化学工业研究所,江苏省生物质能源与材料重点实验室,国家林业和草原局林产化学工程重点实验室,林木生物质低碳高效利用国家工程研究中心,江苏省林业资源高效加工利用协同创新中心,江苏南京210042;[2]南京林业大学林产化学与材料国际创新高地,江苏南京210037
年份:2025
卷号:45
期号:1
起止页码:41-46
中文期刊名:林产化学与工业
外文期刊名:Chemistry and Industry of Forest Products
收录:;北大核心:【北大核心2023】;
基金:江苏省生物质能源与材料重点实验室基本科研业务费项目(JSBEM-S-202315);国家自然科学基金资助项目(32371810)。
语种:中文
中文关键词:生物质基碳材料;杂原子掺杂;电催化CO_(2)还原;密度泛函理论
外文关键词:biomass-based carbon materials;heteroatom doping;electrocatalytic CO_(2)reduction;density functional theory
分类号:TQ35
摘要:为研究不同杂原子掺杂生物质基碳材料对电催化CO_(2)还原性能的影响及反应机理,同时提高其还原性能,围绕碳材料电催化CO_(2)还原反应机制进行理论研究。通过密度泛函理论(DFT)模拟,对比反应中间体和基元反应的吉布斯自由能变化(ΔG),确定不同杂原子掺杂生物质基碳材料最有可能的催化反应机制,筛选出具有高催化性能的杂原子结构。研究结果表明:B掺杂碳材料(BC)在电催化CO_(2)还原中具有最低的ΔG(0.64 eV)和较低的形成能(3.25 eV),表明BC具有较高的催化活性和稳定性。这主要归因于B原子的失电子特性,在掺杂后能够吸引周边碳原子的电子密度,进而在材料中形成电子空穴。这些电子空穴有利于电子与空穴对的生成及电荷的有效分离,为电催化过程中的电子转移提供通道,从而提高材料的催化性能。
To investigate the impact and mechanism of different heteroatom-doped biomass-based carbon materials on the electrocatalytic CO_(2) reduction performance as well as simultaneously improve the electrocatalytic CO_(2) reduction performance of these materials,theoretical research was carried out focusing on the reaction mechanism of the electrocatalytic CO_(2) reduction of carbon materials.Using Density Functional Theory(DFT)simulation to compare the Gibbs free energy change(ΔG)of the reaction intermediates and elementary reactions,the most probable catalytic reaction mechanisms of different heteroatom-doped biomass-based carbon materials were determined,and the heteroatom structures with catalytic performance were screened.The results showed that B-doped carbon materials(BC)had the lowestΔG(0.64 eV)and a relatively low formation energy(3.25 eV)in electrocatalytic CO_(2) reduction,indicating high catalytic activity and stability of BC.This was primarily attributed to the electron-deficient property of B atoms that attracted the electron density of surrounding carbon atoms after doping,thus forming electron holes in the material.These electron holes facilitated the generation of electron-hole pairs and the effective separation of charges,providing a pathway for electron transfer during the electrocatalytic process,thereby enhancing the catalytic performance of the material.
参考文献:
正在载入数据...