详细信息
珠江三角洲3种典型森林类型乔木叶片生态化学计量学 被引量:126
Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China
文献类型:期刊文献
中文题名:珠江三角洲3种典型森林类型乔木叶片生态化学计量学
英文题名:Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China
作者:吴统贵[1,2] 陈步峰[1] 肖以华[1] 潘勇军[1] 陈勇[1] 萧江华[2]
第一作者:吴统贵
机构:[1]中国林业科学研究院热带林业研究所;[2]中国林业科学研究院亚热带林业研究所
年份:2010
期号:1
起止页码:58-63
中文期刊名:植物生态学报
外文期刊名:Chinese Journal of Plant Ecology
收录:CSTPCD;;Scopus;北大核心:【北大核心2008】;CSCD:【CSCD2011_2012】;
基金:科技部社会公益项目(2002DIB50132);国家林业局"948"引进项目(2006-4-18);国家林业局林业科技创新平台项目(2009-LYPT-DW-005)
语种:中文
中文关键词:针叶林;常绿阔叶林;针阔混交林;珠江三角洲;生态化学计量学
外文关键词:coniferous forest, evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, Pearl River Delta, stoichiometry
分类号:S718.545;O651
摘要:以珠江三角洲3种典型森林类型(常绿阔叶林、针阔混交林和针叶林)为研究对象,分析了各类型优势乔木叶片C、N、P化学计量特征。结果显示,所有研究个体叶片C、N、P含量范围分别为434–537、6.8–23.0和0.56–2.10mg·g–1,C:N、C:P和N:P的分布区间分别为21.22–70.74、227.14–844.64和5.26–20.91,且N与P之间、C:N与C:P之间具有较好的协同性。3种森林类型中,针叶林乔木叶片C含量最大,加权平均值为(517.85±35.96)mg·g–1,其次是针阔混交林((509.47±19.38)mg·g–1),常绿阔叶林最小((481.59±18.35)mg·g–1);针叶林乔木叶片N含量((12.20±5.65)mg·g–1)最大,其次是常绿阔叶林((11.50±4.24)mg·g–1),针阔混交林((10.51±5.22)mg·g–1)最小;各森林类型乔木叶片P含量大小顺序与C含量完全相反,为常绿阔叶林((1.31±0.48)mg·g–1)>针阔混交林((0.96±0.61)mg·g–1)>针叶林((0.77±0.40)mg·g–1)。针阔混交林乔木叶片C:N(51.35±13.65)最大,针叶林(47.40±15.85)其次,常绿阔叶林(45.59±14.70)最小;各森林类型乔木叶片C:P和N:P大小顺序相同,均为针叶林(727.47±231.52、15.71±3.76)>针阔混交林(553.01±152.32、10.93±1.89)>常绿阔叶林(412.19±200.91、9.46±4.28)。同时根据乔木叶片N:P还发现,少数阔叶树种和常绿阔叶林生产力受到N素限制。
Aims Plant or biomass stoichiometry can be used to distinguish biological entities (genes, cells, organisms, etc.) based on element composition. Our objective was to determine the stoichiometry characteristics and examine nutrient limitation in evergreen broad-leaved forest, coniferous and broad-leaved mixed forest and coniferous forest. Methods We determined C, N, P stoichiometry of leaves of 19 dominant trees of 16 taxa in three forest types at the Pearl River Delta Forest Ecosystem Research Station, Guangdong Province, South China. Important findings Leaf stoichiometry showed large variations: C ranged from 434 to 537 mg·g^-1, N from 6.8 to 23.0 mg·g^-1, P from 0.56 to 2.10 mg·g^-1, C:N from 21.22 to 70.74, C:P from 227.14 to 844.64 and N:P from 5.26 to 20.91. Leaf N, P, C:N and C:P were linearly correlated (p 〈 0.01). Leaf C, C:P and N:P (weighted average ± standard deviation: (517.85 ± 35.96), (727.47 ± 231.52) and (15.71 ± 3.76) mg·g^-1, respectively) were the highest in coniferous forest, followed by mixed forest (509.47 ± 19.38, 553.01 ± 152.32 and 10.93 ± 1.89, respectively) and evergreen broad-leaved forest (481.59 ± 18.35, 412.19 ± 200.91 and 9.46 ± 4.28, respectively), and a reverse sequence was detected for leafP content. The sequence for N content was coniferous forest ((12.20 ± 5.65) mg·g^-1) 〉 evergreen broad-leaved forest ((11.50 ± 4.24) mg·g^-1) 〉 mixed forest ((10.51 ± 5.22) mg·g^-1) and for C:N was mixed forest (51.35 ± 13.65) 〉 coniferous forest (47.40 ± 15.85) 〉 evergreen broad-leaved forest (45.59 ± 14.70), and higher nutrient use efficiency was discovered in three forest types. Several evergreen broad-leaved trees and evergreen broad-leaved forest had shortages of N.
参考文献:
正在载入数据...