登录    注册    忘记密码

详细信息

Leguminous green mulching alters the microbial community structure and increases microbial diversity by improving nitrogen availability in subtropical orchard systems in China  ( EI收录)  

文献类型:期刊文献

英文题名:Leguminous green mulching alters the microbial community structure and increases microbial diversity by improving nitrogen availability in subtropical orchard systems in China

作者:Wang, Na[1,2] Li, Le[3] Gou, Mengmeng[2,4] Hu, Jianwen[2] Chen, Huiling[2] Xiao, Wenfa[2,4] Liu, Changfu[2,4]

第一作者:Wang, Na

机构:[1] Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, China; [2] Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing, 100091, China; [3] Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510000, China; [4] Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China

年份:2024

卷号:955

外文期刊名:Science of the Total Environment

收录:EI(收录号:20244317245496);Scopus(收录号:2-s2.0-85206797716)

语种:英文

外文关键词:Citrus fruits - Orchards

摘要:Microorganisms, the major decomposers of plant residues, are crucial for soil nutrient cycling. Living grass mulching effectively alters microbial community structure and promotes nutrient cycling. However, its consistency with mulching ages and growth periods remains unclear. Therefore, this study aims to clarify the dynamic characteristics of microbial communities and enzyme activities across different mulching ages. In this study, high-throughput sequencing technology was used to investigate bacterial and fungal community evolution in three mulching treatments with Vicia villosa for 8 years (VV_8), 4 years (VV_4), and clean tillage in a citrus orchard. This study covered three growth periods (citrus–grass: spring sprouting to budding period [SSBP], fruit swelling to withering period [FSWP], and fruit maturity to seeding period [FMSP]). The results showed that VV_4 and VV_8 treatments increased bacterial and fungal alpha diversity as well as the activities of nitrogen (N), carbon (C), and phosphorus cycling enzymes. C-cycling enzyme activity was the primary key factor driving changes in microbial diversity across growth periods. Under leguminous green mulching, bacteria alpha diversity increased the most during FSWP, while fungi increased the most during FMSP. Additionally, the relative abundance of Ascomycota and Basidiomycota significantly increased during the FSWP and FMSP, reaching 63.65–73.80 % and 79.73–84.51 %, respectively. With increasing mulching ages, the structural stability and synergistic effects of microorganisms were correspondingly enhanced. Furthermore, available nutrients determined microbial community evolution, with N availability being a key factor influencing microbial diversity, especially fungal diversity. In conclusion, as mulching ages increase, improved nutrient availability gradually enhances microbial diversity, synergistic interactions, and nutrient cycling functions, with copiotrophic taxa occupying a key position in the microbial network. FSWP is a critical turning point for enhancing microbial activity and C-cycling function. This study offers theoretical support for developing microbial regulation strategies to improve soil quality in orchard management practices. ? 2024 Elsevier B.V.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心