登录    注册    忘记密码

详细信息

基于高分一号影像光谱指数识别火烧迹地的决策树方法     被引量:26

Decision Tree Method for Burned Area Identification Based on the Spectral Index of GF-1 WFV Image

文献类型:期刊文献

中文题名:基于高分一号影像光谱指数识别火烧迹地的决策树方法

英文题名:Decision Tree Method for Burned Area Identification Based on the Spectral Index of GF-1 WFV Image

作者:祖笑锋[1] 覃先林[1] 尹凌宇[1] 陈小中[2] 钟祥清[2]

第一作者:祖笑锋

机构:[1]中国林业科学研究院资源信息研究所;[2]四川省林业信息中心

年份:2015

卷号:0

期号:4

起止页码:73-78

中文期刊名:林业资源管理

外文期刊名:Forest Resources Management

收录:北大核心:【北大核心2014】;

基金:民用航天预研项目"基于多源空间数据的森林火灾综合监测技术与应用示范";国防科工局重大专项项目(21-Y30B05-9001-13/15)

语种:中文

中文关键词:高分一号卫星影像;森林灾害;火烧迹地;植被指数;决策树模型

外文关键词:GF-1 satellite images,forest disaster,burned area,vegetation index,the decision tree model

分类号:S771.8

摘要:森林火灾发生后,为及时、准确地掌握森林受灾情况,利用高分一号卫星(GF-1)16m宽幅影像各波段反射率信息,结合计算的归一化植被指数(NDVI)、过火区识别指数(BAI)、阴影植被指数(SVI)、归一化差异水体指数(NDWI)和全球环境监测指数(GEMI)等5种光谱指数,构建森林火烧迹地识别决策树模型(CART);在选取的研究区对该模型方法进行验证,并与最大似然监督分类法和非监督分类(ISODATA)方法所得到的结果精度进行了对比分析,结果表明:采用基于CART模型的决策树方法对火烧迹地识别结果精度较最大似然法总体分类精度提高了4.38%,Kappa系数提高了0.102 4,制图精度提高了14.96%,用户精度提高了8.50%;而采用ISODATA方法识别的火烧迹地的总体精度和Kappa系数都较低,制图精度和用户精度都没有达到1%。
This paper describes the technique to be needed for rapidly and accurately identifying the burn-ed area by forest fires,following the catastrophic fires by the vegetation index CART decision tree methods using the wide coverage image of GF-1(GF-1 WFV).They were compared between the maximum likeli-hood classification of supervised and unsupervised classification(ISODATA),within burned area indexes, to improve the accuracy of the burned area,shaded vegetation index,global environment monitoring in-dex,improved shadows and bare commission or omission burned phenomenon.The results showed that the decision tree classification method based on CART algorithms for burned area identification has signifi-cantly improved the overall accuracy by 4.38% compared with the maximum likelihood method;Kappa coefficient increased by 0.1024.GF-1 satellite imagery for unsupervised classification(ISODATA)identi-fies the burned area poorly,the overall accuracy and Kappa coefficient are low,the map making accuracy and user accuracy have not reached 1%.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心