登录    注册    忘记密码

详细信息

近红外光谱结合SIMCA模式识别法检测木材表面节子     被引量:14

Rapid Detection of Knot Defect in Wood Surface by Near Infrared Spectroscopy Coupled with SIMCA Pattern Recognition

文献类型:期刊文献

中文题名:近红外光谱结合SIMCA模式识别法检测木材表面节子

英文题名:Rapid Detection of Knot Defect in Wood Surface by Near Infrared Spectroscopy Coupled with SIMCA Pattern Recognition

作者:杨忠[1] 陈玲[1] 付跃进[1] 吕斌[1]

第一作者:杨忠

机构:[1]中国林业科学研究院木材工业研究所

年份:2012

卷号:40

期号:8

起止页码:70-72

中文期刊名:东北林业大学学报

外文期刊名:Journal of Northeast Forestry University

收录:CSTPCD;;北大核心:【北大核心2011】;CSCD:【CSCD2011_2012】;

基金:国家自然科学基金(30800889)

语种:中文

中文关键词:近红外光谱;SIMCA模式识别法;木材单板;节子缺陷;检测

外文关键词:Near infrared spectroscopy; SIMCA pattern recognition; Wood veneer; Knot defects; Detection

分类号:O657.3;S781

摘要:利用近红外光谱结合SIMCA模式识别法来检测马尾松木材单板节子。结果表明,通过培训集样本建立的基于主成分分析的SIMCA判别模型对有无节子两种类型样本进行回判和对未知节子类型的样本(包括无节子和有节子样本)的判别正确率均达到90%~100%,说明应用近红外光谱结合SIMCA模式识别法可以快速有效地检测木材表面的节子缺陷。
A study was performed to rapidly detect knots in Pinus massoniana veneer by near infrared (NIR) spectroscopy cou- pled with soft independent modeling of class analogy (SIMCA) pattern recognition as well as principal component analysis. The discriminant accuracy by the SIMCA model based on principal component analysis was between 90% and 100%. Resuits showed that NIR spectroscopy coupled with SIMCA pattern recognition could be used to rapidly detect knot defect in wood veneer.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心