登录    注册    忘记密码

详细信息

基于多极化星载SAR数据的水稻/旱田识别——以江苏省海安县为例     被引量:13

Rice/Dry-land Crop Discrimination Using Multi-polarization Satellite SAR Data——A Case Study in Hai'an County of Jiangsu Province

文献类型:期刊文献

中文题名:基于多极化星载SAR数据的水稻/旱田识别——以江苏省海安县为例

英文题名:Rice/Dry-land Crop Discrimination Using Multi-polarization Satellite SAR Data——A Case Study in Hai'an County of Jiangsu Province

作者:田昕[1] 陈尔学[1] 李增元[1] 凌飞龙[2] 白黎娜[1] 王琫瑜[1]

第一作者:田昕

机构:[1]中国林业科学研究院资源信息研究所;[2]福州大学空间信息工程研究中心

年份:2012

卷号:27

期号:3

起止页码:406-412

中文期刊名:遥感技术与应用

外文期刊名:Remote Sensing Technology and Application

收录:CSTPCD;;北大核心:【北大核心2011】;CSCD:【CSCD_E2011_2012】;

基金:国家863计划项目(2006AA120101)资助

语种:中文

中文关键词:多极化SAR;面向对象;SAR强度信息;SAR统计分布

外文关键词:Multi-polarization SAR; Object-based; SAR intensity; SAR statistical properties

分类号:TP79

摘要:合成孔径雷达(SAR)数据对于南方多云多雨天气的地表农作物类型的探测具有独特的优势。以江苏省海安县为例,基于多极化SAR数据,包括双极化ALOS PALSAR以及全极化Radarsat-2数据,采用面向对象的方法,针对当地水稻/旱田进行识别。针对双极化SAR数据,利用了其强度信息进行分类识别;而基于全极化数据,除强度信息外,还利用了其SAR信号统计分布概率进行分类规则建立。结果表明:L波段的ALOS PALSAR在识别旱地的桑树方面具有很大的优势,而基于两种分类方法的C波段Radarsat-2数据识别水稻的精度分别为85%和75%,略低于ALOSPALSAR的识别结果(87.5%)。
Synthetic Aperture Radar(SAR) data has the advantage in detecting the crop types in South China where has the frequent cloudy and rainy days.Based on object-based method,this study used the multi-polarization satellite SAR data,including the dual-polarization ALOS PALSAR and polarimetric Radarsat-2 data,to discriminate the rice and dry-land crop in Haian county,Jiangsu Province.For dual-polarization SAR data,the intensity information was used.For polarimetric SAR data,besides the intensity-information-based classification,the statistica-properties-based method was also applied.The result shows that the L-band ALOS PALSAR outperforms the C-band Radatasat-2 data in discriminating the dry-land mulberry.Moreover,the classification accuracy from ALOS PALSAR based method(87.5%) is also higher than the other two results from Radarsat-2 data based methods(75% and 85% respectively).

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心