详细信息
Comprehensive analysis of LRR-RLKs and key gene identification in Pinus massoniana resistant to pine wood nematode ( SCI-EXPANDED收录) 被引量:1
文献类型:期刊文献
英文题名:Comprehensive analysis of LRR-RLKs and key gene identification in Pinus massoniana resistant to pine wood nematode
作者:Nie, Ziyan[1,2] Li, Wenhua[1,2] Deng, Lili[1,2] Gao, Kai[1] Liu, Qinghua[1] Zhou, Zhichun[1]
第一作者:Nie, Ziyan
通信作者:Liu, QH[1];Zhou, ZC[1]
机构:[1]Chinese Acad Forestry, Res Inst Subtrop Forestry, Engn Res Ctr Masson Pine, State Forestry & Grassland Adm,Key Lab Tree Breedi, Hangzhou, Zhejiang, Peoples R China;[2]Nanjing Forestry Univ, Nanjing, Peoples R China
年份:2022
卷号:13
外文期刊名:FRONTIERS IN PLANT SCIENCE
收录:;WOS:【SCI-EXPANDED(收录号:WOS:000903787100001)】;
语种:英文
外文关键词:pinus massoniana; receptor-like kinase; LRR-RLKs; expression pattern; PTI
摘要:Pinus massoniana is a pioneer tree widely planted for afforestation on barren hills in southern China where the total planted area is 8.04 million ha. The invasive pine wood nematode (Bursaphelenchus xylophilus) poses a serious threat to the survival of P. massoniana. Plant resistance genes encoded by leucine-rich repeat-containing transmembrane-receptor proteins play important roles in plant defense. Leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest subfamily of the RLK protein family, play an important role in sensing stress signals in plants. However, the LRR-RLKs of P. massoniana have not been characterized previously, and their role in resistance to B. xylophilus is unknown. In this study, 185 members of the LRR-RLK subfamily were identified in P. massoniana and were categorized into 14 subgroups. Transcriptomic and quantitative real-time RT-PCR analyses showed that PmRLKs32 was highly expressed in the stem tissue after inoculation with B. xylophilus. The gene exhibited high homology with AtFLS2 of Arabidopsis thaliana. PmRLKs32 was localized to the plasma membrane and was significantly upregulated in nematode-resistant and nematode-susceptible individuals. The transient expression of PmRLKs32 resulted in a burst of reactive oxygen species production in P. massoniana and Nicotiana benthamiana seedlings. These results lay a foundation for further exploration of the regulatory mechanism of LRR-RLKs in response to biotic stress in P. massoniana.
参考文献:
正在载入数据...