登录    注册    忘记密码

详细信息

近红外光谱结合支持向量机快速识别树种     被引量:5

Fast Identification of Wood Species by Near Infrared Spectroscopy Coupling with Support Vector Machine

文献类型:期刊文献

中文题名:近红外光谱结合支持向量机快速识别树种

英文题名:Fast Identification of Wood Species by Near Infrared Spectroscopy Coupling with Support Vector Machine

作者:梁龙[1] 房桂干[1] 崔宏辉[1] 吴珽[1] 张新民[2] 赵振义[2]

第一作者:梁龙

机构:[1]中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室;[2]华夏科创仪器有限公司

年份:2016

卷号:36

期号:1

起止页码:55-60

中文期刊名:林产化学与工业

外文期刊名:Chemistry and Industry of Forest Products

收录:CSTPCD;;Scopus;北大核心:【北大核心2014】;CSCD:【CSCD2015_2016】;

基金:国家林业局948技术引进项目(2014-4-31)

语种:中文

中文关键词:近红外光谱;支持向量机;树种识别;制浆

外文关键词:near infrared spectroscopy;support vector machines;wood species identification;pulp

分类号:TQ35;O657.3

摘要:利用阿达玛变换近红外光谱结合支持向量机,对制浆造纸常用木材树种的快速识别进行研究。将各树种近红外光谱先进行多点平滑和标准正态变换预处理以消除噪音干扰和光散射导致的测量偏差,然后基于不同建模策略建立一对多和一对一两种支持向量机模型,考察这两种模型对多树种属间分类和种间分类的预测能力,并与传统的偏最小二乘判别分析分类法进行对比。结果表明,支持向量机预测模型对桉木、相思木、杨木、水杉等树种的属间分类正确率达到98%以上,种间分类正确率均达到95%以上,在处理复杂分类问题时模型稳健性明显优于传统分类方法,从方法上证明了近红外技术工业化应用的可能性,为进一步建立近红外在线检测木片材性分析系统奠定了基础。
Fast identification of different wood materials for papermaking by portable hadamard transform near infrared spectroscopy( HT-NIR) in combination with support vector machines( SVM) was investigated in present study. Savitzky-Golay smoothing method and standard normal variation were used to pretreat the spectral for eliminating noise and measurement deviation caused by light scattering. The one-against-all model and one-against-one model were constructed based on different SVM modeling strategies. The prediction performance for genera classification and species classification of two SVM models was evaluated with partial least squares discriminant analysis( PLS-DA). In this study,SVM was applied to identify different wood species,such as eucalyptus,acacia,populus and metasequoia. The genera correct classification rates and species correct classification rates achieved above 98% and 95%,respectively. The SVM method demonstrated its integrated merits in solving complex classification compared with the traditional linear machine learning methods. The study results showed the feasibility of industrial application of NIR technology and laid the foundation for building the on-line NIR analysis system for wood chips.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心