登录    注册    忘记密码

详细信息

联合LiDAR、高光谱数据及3D-CNN方法的树种分类  ( EI收录)  

Tree Species Classification by Combining LiDAR,Hyperspectral Data and 3D-CNN Method

文献类型:期刊文献

中文题名:联合LiDAR、高光谱数据及3D-CNN方法的树种分类

英文题名:Tree Species Classification by Combining LiDAR,Hyperspectral Data and 3D-CNN Method

作者:毛英伍[1] 郭颖[2] 张王菲[1] 苏勇[1] 关塬[1]

第一作者:毛英伍

机构:[1]西南林业大学林学院,昆明650224;[2]中国林业科学研究院资源信息研究所,北京100091

年份:2023

卷号:59

期号:3

起止页码:73-83

中文期刊名:林业科学

外文期刊名:Scientia Silvae Sinicae

收录:CSTPCD;;EI(收录号:20232814381610);Scopus;北大核心:【北大核心2020】;CSCD:【CSCD2023_2024】;

基金:中央级公益性科研院所基本科研业务费专项资金项目“森林资源出数关键技术研究”(CAFYBB2021SY006);国家自然科学基金(32160365,31860240,42161059);云南省兴滇英才支持计划(80201444)。

语种:中文

中文关键词:高光谱;LiDAR;卷积神经网络;树种分类;3D-CNN

外文关键词:hyperspectral;LiDAR;convolutional neural network;tree species classification;3D-CNN

分类号:S757

摘要:【目的】探究三维卷积神经网络(3D-CNN)在高光谱数据支持的树种分类中的有效网络构建方式,以提高树种分类精度。【方法】以美国加利福尼亚州内华达山脉南部为研究区,LiDAR数据获取的森林冠层高(CHM)进行单木分割并以此为补充建立样本,改进一种结构更简单、分类精度更高且无需对高光谱数据进行预处理的3D-CNN网络结构用于森林树种识别。【结果】相较于常规机器学习分类方法【支持向量机(SVM),随机森林(RF)】、传统二维卷积神经网络模型(2D-CNN)及最新多光谱分辨率三维卷积神经网络(MSR 3D-CNN)模型,本研究提出的3D-CNN模型对树种总体分类精度为99.79%,平均交并比(MIoU)为99.53%。与SVM和RF分类结果相比,本研究构建的3D-CNN模型总体分类精度提高5%左右,且具有对树种边界提取更加准确、椒盐现象更少发生的特点;与2D-CNN相比,总体分类精度提高10%左右,MIoU提高7%左右;与MSR 3D-CNN相比,总体精度相差不大,但在训练和测试过程中,本模型耗时远远小于MSR 3D-CNN模型。【结论】本研究改进的3D-CNN模型结构能够高效对原始高光谱影像进行树种分类并制图,可有效提高树种分类的精度。
【Objective】To explore the effective network construction method of three-dimensional convolutional neural network(3D-CNN)in tree species classification supported by hyperspectral data.【Method】Taking the southern Sierra Nevada,California,USA as the study area,the canopy height model(CHM)obtained from LiDAR data was divided into single trees and used as a supplement to establish samples.A 3D-CNN network structure with simpler structure,higher classification accuracy and no need to preprocess hyperspectral data was improved for forest species identification.【Result】Compared with the conventional supervised classification methods(support vector machine,random forest),the traditional two-dimensional convolutional neural network model and the latest MSR 3D-CNN model,the overall classification accuracy of the 3D-CNN model proposed in this study is 99.79%,and the mean intersection over union(MIoU)is 99.53%.Compared with SVM and RF method,the overall classification accuracy is improved by about 5%,and the new 3D-CNN model has the characteristics of more accurate extraction of tree species'boundaries and less pepper and salt phenomenon;Compared with 2D-CNN,the overall classification accuracy is improved by about 10%,and MIoU is improved by about 7%;Compared with MSR 3D-CNN,the overall accuracy is not much different,but in the process of training and testing,this model takes much less time than MSR 3D-CNN model.【Conclusion】The 3D-CNN model proposed in this study can efficiently process the original hyperspectral images,classify and map tree species,and add forest vertical structure information to make classification labels,which can obtain higher accurate classification results.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心