登录    注册    忘记密码

详细信息

基于人工神经网络模型的木材干燥应变模拟预测  ( EI收录)  

Simulation of Drying Strain Based on Artificial Neural Network Model

文献类型:期刊文献

中文题名:基于人工神经网络模型的木材干燥应变模拟预测

英文题名:Simulation of Drying Strain Based on Artificial Neural Network Model

作者:付宗营[1] 蔡英春[2] 高鑫[1] 周凡[1] 江京辉[1] 周永东[1]

第一作者:付宗营

通信作者:Zhou, Yongdong

机构:[1]中国林业科学研究院木材工业研究所,国家林业和草原局木材科学与技术重点实验室,北京100091;[2]东北林业大学材料科学与工程学院,哈尔滨150040

年份:2020

卷号:56

期号:6

起止页码:76-82

中文期刊名:林业科学

外文期刊名:Scientia Silvae Sinicae

收录:CSTPCD;;EI(收录号:20203108996325);Scopus;北大核心:【北大核心2017】;CSCD:【CSCD2019_2020】;

基金:国家自然科学基金青年科学基金项目(31800478)。

语种:中文

中文关键词:人工神经网络;弹性应变;机械吸附蠕变;模拟预测

外文关键词:artificial neural network;elastic strain;mechano-sorptive creep;simulation and prediction

分类号:S781.71

摘要:【目的】研究常规干燥过程中干燥基准、预处理条件、含水率对木材干燥应力的影响,探讨干燥应力沿髓心至树皮方向的分布情况,以实现干燥应变的模拟预测。【方法】整合分析采用图像解析法测算得到的弹性应变和机械吸附蠕变相关数据,基于人工神经网络模型,以干燥温度、含水率、相对湿度、距髓心距离为输入变量对弹性应变进行模拟预测,以预处理温度、干燥温度、含水率、相对湿度、距髓心距离为输入变量对机械吸附蠕变进行模拟预测。通过网络训练和验证,得到合理的人工神经网络预测模型,并对模型进行测试,探讨分析所建立模型的预测能力。【结果】弹性应变预测模型中,各数据集均呈现出较好的相关性,训练集、验证集和测试集的相关系数(R)分别为0.988、0.983和0.978,所有数据集的决定系数(R2)均高于0.95,验证集达到最优时的均方差(MSE)为1.21×10-6。机械吸附蠕变预测模型中,利用含水率为28%和12%的数据集进行模型训练和验证,训练集和验证集的相关系数(R)分别为0.981、0.977,验证集达到最优时的均方差(MSE)为1.26×10-6;利用含水率20%的数据集进行模型测试,测试集的相关系数(R)为0.969,所有数据集的决定系数(R2)均高于0.94,网络模型能够解释94%以上的试验数据,表现出较好的预测能力。【结论】所建立模型的预测值和试验值吻合较好,预测成功率较高,能够为人工神经网络在干燥应力、应变方面的应用提供可行性依据。
【Objective】The effects of drying schedule,pretreatment condition,moisture content on wood drying stress and its distribution from pith to bark were investigated in this study to achieve the simulation and prediction of drying strain.【Method】The data sets of elastic strain and mechano-sorptive creep obtained with image analysis method were analyzed.The elastic strain and mechano-sorptive creep were modelled by artificial neural network,for the model of elastic strain with four inputs,i.e.,drying temperatures,wood moisture content,relative humidity and the distance from pith,and for mechano-sorptive creep added pre-steaming temperature as an additional input.According to the training and validation processes,two reasonable prediction models were obtained,and then the predictive ability of the models were discussed with testing processes.【Result】In elastic strain model,there were significant correlations between experimental and predicted values in all date sets.The R-values for training,validation and test sets were 0.988,0.983 and 0.978,respectively.The R2 values were greater than 0.95 in all data sets,and the best validation performance of the mean square error was 1.21×10-6.In mechano-sorptive creep model,the R-values for training and validation sets were 0.981 and 0.977 with the data sets at moisture content of 28%and 12%,respectively.The best validation performance of the mean square error was 1.26×10-6.The R-value for test set was 0.969 with the data set at moisture content of 20%.Furthermore,the R2 values were greater than 0.94 in all data sets,indicating that the network model was capable to explain more than 94%experimental values.【Conclusion】In the two established models,the predicted values were in good agreement with the experimental values,showing a high prediction accuracy,which provided a feasible basis for the application of artificial neural network in exploring drying stress and strain.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心