详细信息
Acclimation Strategy of Masson Pine (Pinus massoniana) by Limiting Flavonoid and Terpenoid Production under Low Light and Drought ( SCI-EXPANDED收录) 被引量:5
文献类型:期刊文献
英文题名:Acclimation Strategy of Masson Pine (Pinus massoniana) by Limiting Flavonoid and Terpenoid Production under Low Light and Drought
作者:Shi, Zheng[1] Deng, Xiuxiu[1,2] Zeng, Lixiong[1] Shi, Shengqing[3] Lei, Lei[1] Xiao, Wenfa[1]
通信作者:Xiao, WF[1]
机构:[1]Chinese Acad Forestry, Key Lab Forest Ecol & Environm, Natl Forestry & Grassland Adm, Ecol & Nat Conservat Inst, Beijing 100091, Peoples R China;[2]Chinese Acad Forestry, Expt Ctr Forestry North China, Natl Permanent Sci Res Base Warm Temperate Zone F, Beijing 102300, Peoples R China;[3]Chinese Acad Forestry, Res Inst Forestry, State Key Lab Tree Genet & Breeding, Beijing 100091, Peoples R China
年份:2022
卷号:23
期号:15
外文期刊名:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
收录:;Scopus(收录号:2-s2.0-85136341595);WOS:【SCI-EXPANDED(收录号:WOS:000840199100001)】;
基金:This study was supported by the National Key Research and Development Program of China (Grant No. 2016YFD0600201) and the National Natural Science Foundation of China (Grant No. 32071560).
语种:英文
外文关键词:Masson pine; low light; drought; flavonoids; terpenoids
摘要:Low light and drought often limit the growth and performance of Masson pines (Pinus massoniana) in the subtropical forest ecosystem of China. We speculated that stress-induced defensive secondary metabolites, such as flavonoids and terpenoids, might influence the growth of Masson pines, considering the existence of tradeoffs between growth and defense. However, the mechanisms of Masson pines responsive to low light and drought at the levels of these two metabolites remain unclear. In the present work, the compositions of flavonoids and terpenoids, as well as their biosynthetic pathways, were revealed through metabolome and transcriptome analyses, respectively, coupled with a study on carbon allocation using a (CO2)-C-13-pulse-labeling experiment in two-year-old seedlings under low light (LL), drought (DR), and their combined stress (DL) compared to a control (CK). A total of 35 flavonoids and derivatives (LL vs. CK: 18; DR vs. CK: 20; and DL vs. CK: 18), as well as 29 terpenoids and derivatives (LL vs. CK: 23; DR vs. CK: 13; and DL vs. CK: 7), were differentially identified in the leaves. Surprisingly, most of them were decreased under all three stress regimes. At the transcriptomic level, most or all of the detected DEGs (differentially expressed genes) involved in the biosynthetic pathways of flavonoids and terpenoids were downregulated in phloem and xylem under stress treatments. This indicated that stress treatments limited the production of flavonoids and terpenoids. The reduction in the C-13 allocation to stems might suggest that it is necessary for maintaining the growth of Masson pine seedlings at the whole-plant level by attenuating energetic resources to the biosynthetic pathways of flavonoids and terpenoids when facing the occurrence of adverse environments. Our results provide new insight into understanding the acclimation strategy of Masson pines or other conifers in adverse environments.
参考文献:
正在载入数据...