详细信息
基于多时相Sentinel-2影像和SNIC分割算法的优势树种识别 ( EI收录)
Identification of Dominant Tree Species Based on Multi-Temporal Sentinel-2 Images and SNIC Segmentation Algorithm
文献类型:期刊文献
中文题名:基于多时相Sentinel-2影像和SNIC分割算法的优势树种识别
英文题名:Identification of Dominant Tree Species Based on Multi-Temporal Sentinel-2 Images and SNIC Segmentation Algorithm
作者:岳巍[1] 李世明[1] 李增元[1] 刘清旺[1] 庞勇[1] 斯林[1]
第一作者:岳巍
机构:[1]中国林业科学研究院资源信息研究所、国家林业和草原局林业遥感与信息技术重点实验室,北京100091
年份:2022
卷号:58
期号:9
起止页码:60-69
中文期刊名:林业科学
外文期刊名:Scientia Silvae Sinicae
收录:CSTPCD;;EI(收录号:20230513470805);Scopus;北大核心:【北大核心2020】;CSCD:【CSCD2021_2022】;
基金:中国林业科学研究院资源信息研究所结余资金项目(2019JYZJ05);国家重点研发计划项目(2020YFE0200800)。
语种:中文
中文关键词:多时相;简单非迭代聚类超像素分割算法;树种识别;时间序列
外文关键词:multi-temporal;simple non-iterative clustering(SNIC);tree species identification;time series
分类号:Q958.15;S154.5
摘要:【目的】探究将简单非迭代聚类超像素分割算法(SNIC)融合到基于多时相数据的树种分类问题中,并对比分析不同时相数据组合对分类结果的影响,实现更高效、更精准的优势树种识别。【方法】以内蒙古旺业甸林场为研究区,在Google Earth Engine(GEE)云计算平台上利用多时相Sentinel-2多光谱数据提取波段反射率特征和光谱指数特征,采用SNIC和支持向量机(SVM)机器学习分类方法,实现面向对象的优势树种识别,并分析不同时相数据组合对优势树种识别精度的影响。【结果】多时相数据组合的分类精度明显高于各季节单时相数据。对比不同多时相数据组合分类结果,春、秋2个季节时间序列组合数据的分类精度与多季节组合数据结果相近,总体精度分别为94.5%、95.0%和95.8%。【结论】基于多时相Sentinel-2影像和SNIC分割算法的面向对象分类方法能够快速、准确识别优势树种,多季节组合数据的分类结果最优,春、秋2个季节时间序列数据也能获得较好分类结果,总体精度与最优结果差距较小。
【Objective】The spatial distribution of different tree species is the basis of forest inventory and forest dynamic monitoring, and is of great significance to the protection of forest ecosystems and the sustainable management of forest farms.【Method】In this paper, Wangyedian forest farm in Inner Mongolia is selected as the research area. Multi-temporal Sentinel-2 multi-spectral data is used on the Google Earth Engine(GEE)cloud computing platform to extract band reflectance characteristics and spectral index characteristics. The simple non-iterative clustering(SNIC)superpixel segmentation algorithm and the support vector machine(SVM)machine learning classification method are used to identify object-oriented dominant tree species, and the impact of different multi-temporal data combinations on the classification result is analyzed.【Result】Experimental result show that the classification accuracy of multi-temporal data combination is significantly higher than that of single-temporal data in each season. Comparing the multi-temporal data combination, The classification accuracy of the combined data of spring and autumn time series is similar to that of multi-season data combination, and their overall accuracy is 94.5%, 95.0%, 95.8%, respectively.【Conclusion】The object-oriented classification method proposed in this paper based on multi-temporal data and SNIC algorithm can identify dominant tree species quickly and accurately. Among them, the classification result using multi-season data combination is the best, and the time series data of the spring and autumn seasons can also obtain good classification result, and the overall accuracy is a little lower than the optimal result.
参考文献:
正在载入数据...