详细信息
基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布 被引量:24
Predicting the Potential Distribution of Phyllostachys edulis with DOMAIN and NeuralEnsembles Models
文献类型:期刊文献
中文题名:基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布
英文题名:Predicting the Potential Distribution of Phyllostachys edulis with DOMAIN and NeuralEnsembles Models
作者:张雷[1] 刘世荣[2] 孙鹏森[1] 王同立[3]
机构:[1]中国林业科学研究院森林生态环境与保护研究所国家林业局森林生态环境重点实验室;[2]中国林业科学研究院;[3]Department of Forest Sciences,University of British Columbia Vancouver V6T1Z4
年份:2011
卷号:47
期号:7
起止页码:20-26
中文期刊名:林业科学
外文期刊名:Scientia Silvae Sinicae
收录:CSTPCD;;Scopus;北大核心:【北大核心2008】;CSCD:【CSCD2011_2012】;
基金:国家自然科学基金重大项目课题(30590383);林业公益性行业重大科研专项(200804001;201104006);中国林业科学研究院院所基金海外人才专项(CAFYBB2008007);"十一五"科技支撑项目(2006BAD03A04);国家科技部国际科技合作项目(2008DFA32070)资助
语种:中文
中文关键词:DOMAIN;NeuralEnsembles;模型耦合;潜在分布模拟;气候变化;毛竹
外文关键词:DOMAIN; NeuralEnsembles; hybrid model; potential distribution modeling; climate change; Phyllostachys edulis
分类号:Q948.5
摘要:通过概形分析模型(profile technique)——DOMAIN生成物种生境适宜分布图,选取低适宜性的地区作为物种不存在区,然后应用分类判别分析模型(group discrimination technique)——NeuralEnsembles预测我国毛竹潜在分布。结果表明:通过耦合DOMAIN和NeuralEnsembles模型可以改进NeuralEnsenbles模型预测精度;AUC和敏感度对用于建模的物种不存在数据取样数量不敏感,而最大Kappa值随着不存在数据取样数量的增大逐渐减小;未来气候变化将导致毛竹向北迁移33~266km,面积增加7.4%~13.9%。
In this paper a profile technique- DOMAIN was used to map potential habitat suitable for moso bamboo (Phyllostachys edulis). and to select the areas with low suitable habitat as pseudo-absences. Then a group discrimination technique-NeuralEnsembles was employed to predict the potential distribution of moso bamboo (hereafter termed hybrid model) based on pseudo-absences and true presences data. Sensitivity, Kappa and the area under the curve (AUC) values of receiver operator characteristic (ROC) curve were employed to assess model predictive accuracy. Meanwhile, we investigated the sample size effects of pseudo-absences generated by DOMAIN on model performance. We also compared model performance of hybrid model with single model-NeurnalEnsembles. Results indicated that the hybrid model could achieve a higher accuracy in simulating current distribution of moso bamboo in comparison to single model. Sensitivity and AUC were relatively independent from pseudo-absence sample size, but Kappa declined with the increasing pseudo-absence sample size. Climate change is likely to have dramatic effects on the potential distribution of moso bamboo, with the northward migration ranging from 33 to 266 km, and the area expansion by 7.4% to 13.9%.
参考文献:
正在载入数据...