详细信息
Circadian Regulation of Alternative Splicing of Drought-Associated CIPK Genes in Dendrobium catenatum (Orchidaceae) ( SCI-EXPANDED收录) 被引量:13
文献类型:期刊文献
英文题名:Circadian Regulation of Alternative Splicing of Drought-Associated CIPK Genes in Dendrobium catenatum (Orchidaceae)
作者:Wan, Xiao[1] Zou, Long-Hai[1] Zheng, Bao-Qiang[1] Wang, Yan[1]
第一作者:Wan, Xiao
通信作者:Wang, Y[1]
机构:[1]Chinese Acad Forestry, Res Inst Forestry, State Key Lab Tree Genet & Breeding, Beijing 100091, Peoples R China
年份:2019
卷号:20
期号:3
外文期刊名:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
收录:;Scopus(收录号:2-s2.0-85061597930);WOS:【SCI-EXPANDED(收录号:WOS:000462412500232)】;
基金:This research was funded by the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No. 2013BAD01B0703; Exploring Germplasm Resources of genus Dendrobium, Innovation, and Utilization).
语种:英文
外文关键词:alternative splicing; circadian rhythm; CIPK; Dendrobium catenatum; drought stress
摘要:Dendrobium catenatum, an epiphytic and lithophytic species, suffers frequently from perennial shortage of water in the wild. The molecular mechanisms of this orchid's tolerance to abiotic stress, especially drought, remain largely unknown. It is well-known that CBL-interacting protein kinase (CIPKs) proteins play important roles in plant developmental processes, signal transduction, and responses to abiotic stress. To study the CIPKs' functions for D. catenatum, we first identified 24 CIPK genes from it. We divided them into three subgroups, with varying intron numbers and protein motifs, based on phylogeny analysis. Expression patterns of CIPK family genes in different tissues and in response to either drought or cold stresses suggested DcaCIPK11 may be associated with signal transduction and energy metabolism. DcaCIPK9, -14, and -16 are predicted to play critical roles during drought treatment specifically. Furthermore, transcript expression abundances of DcaCIPK16 showed polar opposites during day and night. Whether under drought treatment or not, DcaCIPK16 tended to emphatically express transcript1 during the day and transcript3 at night. This implied that expression of the transcripts might be regulated by circadian rhythm. qRT-PCR analysis also indicated that DcaCIPK3, -8, and -20 were strongly influenced by circadian rhythmicity. In contrast with previous studies, for the first time to our knowledge, our study revealed that the major CIPK gene transcript expressed was not always the same and was affected by the biological clock, providing a different perspective on alternative splicing preference.
参考文献:
正在载入数据...