详细信息
投影寻踪分类模型在常见造纸纤维原料综合评价中的应用 被引量:2
Application of Projection Pursuit Classification Model in Comprehensive Evaluation of Common Papermaking Materials
文献类型:期刊文献
中文题名:投影寻踪分类模型在常见造纸纤维原料综合评价中的应用
英文题名:Application of Projection Pursuit Classification Model in Comprehensive Evaluation of Common Papermaking Materials
第一作者:赵静远
机构:[1]南京林业大学江苏省制浆造纸科学与技术重点实验室,江苏南京210037;[2]中国林业科学研究院林产化学工业研究所,江苏南京210042
年份:2020
卷号:35
期号:3
起止页码:53-58
中文期刊名:中国造纸学报
外文期刊名:Transactions of China Pulp and Paper
收录:CSTPCD;;Scopus;北大核心:【北大核心2017】;CSCD:【CSCD_E2019_2020】;
基金:中国林科院林业新技术所基本科研业务费专项资助(CAF,基金号:CAFYBB2019SY039)。
语种:中文
中文关键词:RAGA算法;PPC模型;分类;综合评价
外文关键词:RAGA algorithm;PPC model;classification;comprehensive evaluation
分类号:TS721
摘要:将投影寻踪分类(PPC)模型与基于实数编码的加速遗传算法(RAGA)相结合,同时优化多个指标参数,将高维数据指标转化为低维空间上的一维投影值,建立RAGA-PPC模型,用于造纸纤维原料分类,并对造纸纤维原料进行综合评价。结果表明,基于RAGA-PPC模型的评价结果与造纸纤维原料实际分类结果一致,此方法客观可靠,精度高,具有一定的应用前景。
In this paper,the projection pursuit classification(PPC)and accelerated genetic algorithm(RAGA)based on real coding were combined and optimized multiple index parameters to convert high-dimensional data indexes into one-dimensional projection.Based on the RAGA-PPC model,the various papermaking raw materials were classified,and evaluated effectively.The conclusion demonstrated that evaluation result of RAGA-PPC model was consistent with the actual category of the papermaking raw materials.Furtherly this method has more advantages in objectivity,reliability,accuracy and has practical application prospects.
参考文献:
正在载入数据...