详细信息
Identification and comprehensive analysis of the characteristics and roles of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in Sedum alfredii Hance responding to cadmium stress ( SCI-EXPANDED收录) 被引量:16
文献类型:期刊文献
英文题名:Identification and comprehensive analysis of the characteristics and roles of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in Sedum alfredii Hance responding to cadmium stress
作者:He, Xuelian[1,2] Feng, Tongyu[1,2] Zhang, Dayi[3] Zhuo, Renying[1,2] Liu, Mingying[1,2]
第一作者:He, Xuelian
通信作者:Liu, MY[1]|[a00056a125aeae3900b07]刘明英;
机构:[1]State Key Lab Forest Genet & Breeding, Xiangshan Rd, Beijing 100091, Peoples R China;[2]Chinese Acad Forestry, Res Inst Subtrop Forestry, Key Lab Tree Breeding Zhejiang Prov, Hangzhou 311400, Zhejiang, Peoples R China;[3]Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
年份:2019
卷号:167
起止页码:95-106
外文期刊名:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
收录:;WOS:【SCI-EXPANDED(收录号:WOS:000451360800012)】;
基金:We thank the anonymous referees and the editor for the comments and suggestions that helped improve the manuscript. This work was supported by the National Key Research and Development Program of China (No. 2016YFD0800801), the National Natural Science Foundation of China (No. 31870647), the National Nonprofit Institute Research Grant of Chinese Academy of Forestry (No. RISF2014010, No. RISF2016002).
语种:英文
外文关键词:Sedum alfredii Hance; Leucine-rich repeat receptor-like protein kinase (LRR-RLK); Cadmium stress; Signal transduction
摘要:Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator and its underlying molecular mechanism of Cd tolerance is worthy to be elucidated. Although numerous studies have reported the uptake, sequestration and detoxification of Cd in S. alfredii Hance, how it senses Cd-stress stimuli and transfers signals within tissues remains unclear. Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are vital for plant growth, development, immunity and signal transduction. Till now, there is lack of comprehensive studies addressing their functions in S. alfredii Hance responding to Cd stress. In the present study, we identified 60 LRR-RLK genes in S. alfredii Hance based on transcriptome analysis under Cd stress. They were categorized into 11 subfamilies and most of them had highly conserved protein structures and motif compositions. The inter-family diversity provided evidence for their functional divergence, supported by their expression level and profile in tissues under Cd stress. Co-expression network analysis revealed that the most highly connected hubs, Sa0F.522, Sa0F.1036, Sa28F.115 and Sa1F.472, were closely related with other genes involved in metal transport, stimulus response and transcription regulations. Of the ten hub genes exhibiting differential expression dynamics under the short-term Cd stress (Sa0F.522, Sa0F.1036 and Sa28F.115) were dramatically induced in the whole plant. Among them, Sa0F.522 gene was heterologously expressed in a Cd-sensitive yeast cell line and its function in Cd signal perception was confirmed. For the first time, our findings performed a comprehensive analysis of LRR-RLKs in S. alfredii Hance, mapped their expression patterns under Cd stress, and identified the key roles of Sa0F.522, Sa0F.1036 and Sa28F.115 in Cd signal transduction.
参考文献:
正在载入数据...