登录    注册    忘记密码

详细信息

三种回归分析方法在Hyperion影像LAI反演中的比较     被引量:15

Comparison of three regression analysis methods for application to LAI inversion using Hyperion data

文献类型:期刊文献

中文题名:三种回归分析方法在Hyperion影像LAI反演中的比较

英文题名:Comparison of three regression analysis methods for application to LAI inversion using Hyperion data

作者:孙华[1,2] 鞠洪波[1] 张怀清[1] 林辉[2] 凌成星[1]

第一作者:孙华

机构:[1]中国林业科学研究院资源信息所;[2]中南林业科技大学林业遥感信息工程研究中心

年份:2012

卷号:32

期号:24

起止页码:7781-7790

中文期刊名:生态学报

外文期刊名:Acta Ecologica Sinica

收录:CSTPCD;;Scopus;北大核心:【北大核心2011】;CSCD:【CSCD2011_2012】;

基金:国家"十二五"863项目(2012AA102001);林业公益性行业科研专项(201104028)

语种:中文

中文关键词:遥感反演;叶面积指数;偏最小二乘回归;植被指数;黄丰桥林场

外文关键词:remote sensing inversion ; leaf area index ; partial least-squares regression ; vegetation index ; Huangfengqiao

分类号:P23

摘要:借助GPS进行地面精确定位,利用LAI-2000冠层分析仪在攸县黄丰桥林场开展130个样地(60m×60m)的叶面积指数(Leaf Area Index,LAI)测量。采用FLAASH模块对Hyperion数据进行大气校正并与地面同步冠层观测数据进行拟合,通过研究地面实测LAI与Hyperion影像波段及其衍生的系列植被指数(NDVI、RVI等)的相关性,筛选出估算叶面积指数的植被指数因子。应用曲线估计、逐步回归及偏最小二乘三种回归分析技术分别建立叶面积指数的最优估算模型。结果表明:参与建模的因子中,比值植被指数(RVI)与LAI的相关性最大,敏感性最高,其次是SARVI0.1,NDVI705,NDVI,SARVI0.1,SARVI0.25;曲线估计、逐步回归分析和偏最小二乘回归三种分析方法所建的6个回归模型中,偏最小二乘回归的拟合效果最好,预测值与实测值的决定系数R2为0.84、曲线估计的拟合效果最低,预测值与实测值的决定系数R2为0.64;建模精度分析表明,选用5—6个自变量因子进行LAI建模是可靠的,以6个植被因子建立的偏最小二乘回归模型预测精度最高。
This paper focuses on Leaf Area index (LAI) inversion, using EO- 1 Hyperion data for Huangfengqiao forest farm, YouXian County, Hunan Province. First, LAI was acquired using a LAI-2000 canopy analyzer at 130 sample plots (60 m × 60 m) , with a Global Positioning System (Trimble GPS Geo XT). Second, atmospheric correction was applied to Hyperion data using the ground-synchronous canopy observation data. Third, effective vegetation indexes were selected to estimate LAI, according to research on correlation between LAI, bands and vegetation indexes derived from Hyperion imagery. Finally, an optimal estimation model of LAI was built by curve estimation, stepwise regression, and a partial least-squares regression algorithm. Results show that sensitivity of ratio vegetation index (RVI) was highest among all model factors, followed by SARVI0.1, NDVI705, NDVI, SARVI0.1, and SARVI0.25. Among all fit models, the effect of the partial least-squares regression was best, with R2 coefficient 0.84, whereas the curve estimation effect was worst, with RE coefficient 0.64. Model precision analysis shows that it is reliable to build the model using 5 to 6 independent variables, and prediction accuracy of the partial least-square regression was the greatest.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心