详细信息
基于遥感影像和二类调查数据的林地类型分类方法对比研究——以广西凭祥市为例 被引量:3
Study on Classification Methods Based on Remote Sensing Image and Forest Resources Management Survey Data——Take Pingxiang,Guangxi Autonamous Region as an Example
文献类型:期刊文献
中文题名:基于遥感影像和二类调查数据的林地类型分类方法对比研究——以广西凭祥市为例
英文题名:Study on Classification Methods Based on Remote Sensing Image and Forest Resources Management Survey Data——Take Pingxiang,Guangxi Autonamous Region as an Example
第一作者:张乃静
机构:[1]中国林业科学研究院资源信息研究所
年份:2017
卷号:0
期号:4
起止页码:89-96
中文期刊名:林业资源管理
外文期刊名:Forest Resources Management
收录:北大核心:【北大核心2014】;
基金:中央级公益性科研院所基本科研业务费专项(CAFYBB2017SZ006);国家国际科技合作专项项目(2014DFG32140)
语种:中文
中文关键词:遥感;二类调查;分类
外文关键词:remote sensing,forest resources management survey, classification
分类号:S758;S771.8
摘要:基于Landsat 8 OLI遥感影像和森林资源二类调查数据,对有林地、灌木林地、未成林地和非林地等林地类型,分别采用最大似然、神经网络、支持向量机和决策树分类方法进行分类,验证分类精度,并对分类效果进行对比评价。结果表明:支持向量机分类方法表现最好,分类精度为78.7%,Kappa系数为0.76;其次为神经网络和决策树分类方法,分类精度分别为76.8%和72.5%,Kappa系数分别为0.72和0.68;最大似然法表现最差,分类精度为44.9%,Kappa系数为0.39。研究结果可为森林资源信息的快速提取提供理论依据。
Based on Landsat - 8 image and forest resources management survey data, different forest land types were classified by maximum likelihood classification (ML) , neural net classification (NN) , support vector machine classification (SVM) and decision tree classification ( DT) methods, and then the preci-sions (P ) of classifications were verified, and the performances of classifications were evaluated correla-tively. The results show that the best performance was SVM (P =78. 7 % ,Kappa =0. 76) ,and the follow-ings were NN (P =76. 8 % ,Kappa =0. 72) and DT (P =72. 5 % ,Kappa =0. 68) ,and the worst was ML (P =44. 9% , Kappa =0. 39). These results provide a theory basis for the rapid extraction of forest re-sources information of forestry science data platform.
参考文献:
正在载入数据...