登录    注册    忘记密码

详细信息

Identification and Analysis of Aluminum-Activated Malate Transporter Gene Family Reveals Functional Diversification in Orchidaceae and the Expression Patterns of Dendrobium catenatum Aluminum-Activated Malate Transporters  ( SCI-EXPANDED收录)   被引量:1

文献类型:期刊文献

英文题名:Identification and Analysis of Aluminum-Activated Malate Transporter Gene Family Reveals Functional Diversification in Orchidaceae and the Expression Patterns of Dendrobium catenatum Aluminum-Activated Malate Transporters

作者:Peng, Fu-Cheng[1] Yuan, Meng[1] Zhou, Lin[1] Zheng, Bao-Qiang[1] Wang, Yan[1]

第一作者:Peng, Fu-Cheng

通信作者:Wang, Y[1]

机构:[1]Chinese Acad Forestry, Key Lab Tree Breeding & Cultivat, Natl Forestry & Grassland Adm, Res Inst Forestry, Beijing 100091, Peoples R China

年份:2024

卷号:25

期号:17

外文期刊名:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

收录:;Scopus(收录号:2-s2.0-85203629097);WOS:【SCI-EXPANDED(收录号:WOS:001311288500001)】;

基金:This work was supported by the Basic Research Fund of the Chinese Academy of Forestry, CAF (Grant No. CAFYBB2019ZB001).

语种:英文

外文关键词:Orchidaceae; ALMT gene family; expression pattern; Dendrobium catenatum

摘要:Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT in Orchidaceae. In this study, 34 ALMT genes were identified in the genomes of four orchid species. Specifically, ten ALMT genes were found in Dendrobium chrysotoxum and D. catenatum, and seven were found in Apostasia shenzhenica and Phalaenopsis equestris. These ALMT genes were further categorized into four clades (clades 1-4) based on phylogenetic relationships. Sequence alignment and conserved motif analysis revealed that most orchid ALMT proteins contain conserved regions (TM1, GABA binding motif, and WEP motif). We also discovered a unique motif (19) belonging to clade 1, which can serve as a specifically identified characteristic. Comparison with the gene structure of AtALMT genes (Arabidopsis thaliana) showed that the gene structure of ALMT was conserved across species, but the introns were longer in orchids. The promoters of orchid ALMT genes contain many light-responsive and hormone-responsive elements, suggesting that their expression may be regulated by light and phytohormones. Chromosomal localization and collinear analysis of D. chrysotoxum indicated that tandem duplication (TD) is the main reason for the difference in the number of ALMT genes in these orchids. D. catenatum was chosen for the RT-qPCR experiment, and the results showed that the DcaALMT gene expression pattern varied in different tissues. The expression of DcaALMT1-9 was significantly changed after ABA treatment. Combining the circadian CO2 uptake rate, titratable total acid, and RT-qPCR data analysis, most DcaALMT genes were highly expressed at night and around dawn. The result revealed that DcaALMT genes might be involved in photosynthate accumulation. The above study provides more comprehensive information for the ALMT gene family in Orchidaceae and a basis for subsequent functional analysis.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心