登录    注册    忘记密码

详细信息

Transcriptome Analysis of Litsea cubeba Floral Buds Reveals the Role of Hormones and Transcription Factors in the Differentiation Process  ( SCI-EXPANDED收录)   被引量:16

文献类型:期刊文献

英文题名:Transcriptome Analysis of Litsea cubeba Floral Buds Reveals the Role of Hormones and Transcription Factors in the Differentiation Process

作者:He, Wenguang[1,2,3] Chen, Yicun[1,2] Gao, Ming[1,2] Zhao, Yunxiao[1,2] Xu, Zilong[1,2] Cao, Pei[1,2] Zhang, Qiyan[1,2] Jiao, Yulian[1,2] Li, Hongsheng[1,2] Wu, Liwen[1,2] Wang, Yangdong[1,2]

第一作者:He, Wenguang

通信作者:Wu, LW[1];Wang, YD[1]|[a0005f34f1ecf07bb8f24]汪阳东;

机构:[1]Chinese Acad Forestry, State Key Lab Tree Genet & Breeding, Beijing, Peoples R China;[2]Chinese Acad Forestry, Res Inst Subtrop Forestry, Room 606,73 Daqiao Rd, Hangzhou 311400, Zhejiang, Peoples R China;[3]Fujian Acad Forestry, Key Lab Timber Forest Breeding & Cultivat Mountai, Key Lab Forest Culture & Forest Prod Proc Utiliza, Fuzhou, Fujian, Peoples R China

年份:2018

卷号:8

期号:4

起止页码:1103-1114

外文期刊名:G3-GENES GENOMES GENETICS

收录:;WOS:【SCI-EXPANDED(收录号:WOS:000428693600002)】;

基金:The work was financially supported by the Special Fund for Forestry Scientific Research in the Public Welfare (201504101) and the Fundamental Research Funds for the Central Non-profit Research Institution of Chinese Academy of Forestry (CAFYBB2017SY013).

语种:英文

外文关键词:Litsea cubeba; RNA sequencing; Floral bud differentiation; DEGs; Hormone; Transcription factors; Genome Report

摘要:Background:Litsea cubeba (Lour.) Pers. is an important economic plant that is rich in valuable essential oil. The essential oil is often used as a raw material for perfumes, food additives, insecticides and bacteriostats. Most of the essential oil is contained in the fruit, and the quantity and quality of fruit are dependent on the flowers. To explore the molecular mechanism of floral bud differentiation, high-throughput RNA sequencing was used to detect differences in the gene expression of L. cubeba female and male floral buds at three differentiation stages.Results:This study obtained 160.88 Gbp of clean data that were assembled into 100,072 unigenes, and a total of 38,658 unigenes were annotated. A total of 27,521 simple sequence repeats (SSRs) were identified after scanning the assembled transcriptome, and the mono-nucleotide repeats were predominant, followed by di-nucleotide and tri-nucleotide repeats. A total of 12,559 differentially expressed genes (DEGs) were detected from the female (F) and male (M) floral bud comparisons. The gene ontology (GO) databases revealed that these DEGs were primarily contained in metabolic processes, cellular processes, and single-organism processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) databases suggested that the DEGs belonged to plant hormone signal transduction and accounted for a relatively large portion in all of these comparisons. We analyzed the expression level of plant hormone-related genes and detected the contents of several relevant plant hormones in different stages. The results revealed that the dynamic changes in each hormone content were almost consistent with the expression levels of relevant genes. The transcription factors selected from the DEGs were analyzed. Most DEGs of MADS-box were upregulated and most DEGs of bZIP were downregulated. The expression trends of the DEGs were nearly identical in female and male floral buds, and qRT-PCR analysis revealed consistency with the transcriptome data.Conclusions:We sequenced and assembled a high-quality L. cubeba floral bud transcriptome, and the data appeared to be well replicated (n = 3) over three developmental time points during flower development. Our study explored the changes in the contents of several plant hormones during floral bud differentiation using biochemical and molecular biology techniques, and the changes in expression levels of several flower development related transcription factors. These results revealed the role of these factors (i.e., hormones and transcription factors) and may advance our understanding of their functions in flower development in L. cubeba.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心