详细信息
The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering ( SCI-EXPANDED收录 EI收录) 被引量:30
文献类型:期刊文献
英文题名:The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering
作者:Guo, Juan[1] Rennhofer, Harald[2] Yin, Yafang[1] Lichtenegger, Helga C.[2]
第一作者:郭娟
通信作者:Yin, YF[1];Lichtenegger, HC[2]
机构:[1]Chinese Acad Forestry, Res Inst Wood Ind, Dept Wood Anat & Utilizat, Beijing 100091, Peoples R China;[2]Univ Nat Resources & Life Sci BOKU, Inst Phys & Mat Sci, Dept Mat Sci & Proc Engn, Vienna, Austria
年份:2016
卷号:23
期号:4
起止页码:2325-2340
外文期刊名:CELLULOSE
收录:;EI(收录号:20162502522920);Scopus(收录号:2-s2.0-84974817415);WOS:【SCI-EXPANDED(收录号:WOS:000380089300005)】;
基金:The authors would gratefully like to acknowledge the financial supports the Chinese National Natural Science Foundation (No. 31370559) and the Austrian Federal Ministry of Science, Research and Economy (BMWFW) within the framework of the EURASIA PACIFIC UNINET. The authors thank Dr. Toshiro Morooka from Research Institute for Sustainable Humanosphere, Kyoto University, Japan for the Compression combined with Steam treatment of wood samples.
语种:英文
外文关键词:Cellulose crystallites; Compression combined with steam treatment; Small-angle X-ray scattering; Wide-angle X-ray scattering; Earlywood; Latewood
摘要:Tracking the changes of cellulose crystallites upon thermo-hygro-mechanical treatment is essential to understand the response of wood cell walls to steam and compression. In this paper the influence of Compression combined with Steam (CS) treatment on wood cellulose crystallites and pores structure of Chinese fir (Cunninghamia lanceolata) was studied under different steaming temperatures and compression ratios. Small-angle X-ray scattering and wide-angle X-ray scattering were used to investigate the changes of cellulose crystallites dimension, aspect ratio, fibril diameter distribution, non-crystalline fraction, the number of chains in each microfibril, as well as the fractal dimension and size of pores in response to CS treatment conditions. Results indicate that the crystallinity increased due to CS treatment, but did not show alteration with varying CS treatment conditions, i.e. seemed nearly unaffected by higher temperatures or compression ratio, both for earlywood and latewood. The cellulose crystallite diameter depended on processing parameters: it increased with increasing treatment temperature. No considerable differences were found for earlywood and latewood. We interpret our findings as a rearrangement of adjacent cellulose chains towards higher crystalline perfection attributing to the increase in crystallinity. The same effect allows a larger coherence length of crystalline order and therefore features an increasing cross-sectional dimension. In general we can state that the CS treatment leads to higher crystallinity and more perfectly arranged cellulose crystals, while it does not greatly affect the microfibril diameter but rather the amorphous regions of the microfibrils and the surrounding hemicellulose and lignin.
参考文献:
正在载入数据...