登录    注册    忘记密码

详细信息

基于纹理信息CART决策树的林芝县森林植被面向对象分类     被引量:26

Object-oriented Forest Classification of Linzhi County based on CART Decision Tree with Texture Information

文献类型:期刊文献

中文题名:基于纹理信息CART决策树的林芝县森林植被面向对象分类

英文题名:Object-oriented Forest Classification of Linzhi County based on CART Decision Tree with Texture Information

作者:郝泷[1] 陈永富[1] 刘华[1] 朱雪林[2] 达哇扎西[2] 李伟娜[1]

第一作者:郝泷

机构:[1]中国林业科学研究院资源信息研究所;[2]西藏自治区林业调查规划研究院

年份:2017

卷号:32

期号:2

起止页码:386-394

中文期刊名:遥感技术与应用

外文期刊名:Remote Sensing Technology and Application

收录:CSTPCD;;北大核心:【北大核心2014】;CSCD:【CSCD2017_2018】;

基金:国家科技基础性工作专项"中国森林植被调查"(2013FY111600)

语种:中文

中文关键词:Landsat-8影像;面向对象;CART决策树分类;植被覆盖

外文关键词:Landsat-8imagery; Object-oriented; CART decision tree classification; Vegetation coverage;

分类号:TP75

摘要:以西藏自治区林芝县的Landsat-8影像、地形图为信息源,结合样地调查数据及森林资源二类调查数据,研究基于纹理信息的CART决策树的面向对象分类对研究区内的森林地物类别进行提取,分类的总体精度和Kappa系数分别为82.53%和0.768,相较于不利用纹理信息的决策树分类和基于最大似然分类法的研究区地物类别的提取总体精度均高近10%,Kappa系数分别高0.12和0.111。结果表明:基于纹理信息的CART决策树面向对象分类方法对研究区Landsat-8影像进行植被类型提取,分类结果较好,能够满足研究要求。
The research used Landsat-8imagery of LinZhi,Tibet Autonomous Region and the topographic map as data source,took the ground sample data and the data of forest management inventory as ancillary data,the study mainly extracted the vegetation cover types,including coniferous forest,broad-leaved forest,shrub forest,river and residential areas,from the Landsat-8imagery of LinZhi,Tibet Autonomous Region by using CART decision tree with texture information of object-oriented classification method.The overall accuracy and Kappa coefficient of the decision tree with texture information classification result was82.53% and 0.768,respectively,compared with decision tree without texture information and the maximum likelihood classification results the overall accuracy have increased by almost 10%,and Kappa coefficient have increased 0.12 and 0.111,respectively.The study results showed,the classification results were better and can satisfied the accuracy requirements by using CART decision tree with texture information of object-oriented classification method with the Landsat-8imagery.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心