详细信息
文献类型:期刊文献
中文题名:常用景观指数的因子分析和筛选方法研究
英文题名:Study on Factor Analysis and Selection of Common Landscape Metrics
作者:何鹏[1] 张会儒[1]
第一作者:何鹏
机构:[1]中国林业科学研究院资源信息研究所
年份:2009
卷号:22
期号:4
起止页码:470-474
中文期刊名:林业科学研究
外文期刊名:Forest Research
收录:CSTPCD;;Scopus;北大核心:【北大核心2008】;CSCD:【CSCD2011_2012】;
基金:国家"十一五"科技支撑课题(2006BAD03A08);国家"十一五"科技支撑专题(2006BAD23B0202)
语种:中文
中文关键词:景观指数;因子分析;敏感性分析
外文关键词:landscape metrics ; factor analysis ; sensitivity analysis
分类号:Q149
摘要:本文以42幅云南省一平浪林场卫星遥感图为数据源,采用相关分析、因子分析和敏感性分析等方法,对13个常用的景观指数进行了分类和筛选方法的研究。研究结果显示大多数指数间呈现极高的相关性,通过因子分析提取出了累积贡献率达82.03%的3个公因子,遂将13个景观指数分为了3大类,并利用敏感性系数筛选出了4个具有良好灵敏度、能充分反映生态学意义的代表性景观指数,即斑块个数、平均最近距离、面积加权的平均形状指数和散布与并列指数。本方法有效地解决了景观分类和评价中指数繁多冗余的问题。
Based on data from 42 remote sensing images of Yipinglang Forest Farm in Yunnan Province, 13 common landscape metrics were classified and selected by using the methods of correlation coefficient analysis, multivariate factor analysis and sensitivity analysis. The results indicated that most of them had significant correlationship, and three factors were identified, which can explain about 82.03% of the variation in the 13 metrics. And the 13 landscape metrics were classified into three groups. Four representative landscape metrics which can perform highly- sensitive and reflect eco-system well were selected by sensitivity index, which are number of patches( NP), euclidean nearest neighbor distance(MNN), area-weighted mean shape index(MSI), interspersion & juxtaposition index(IJI). This method can solve the problem of metrics redundancy efficiently in landscape classification and evaluation.
参考文献:
正在载入数据...