详细信息
轻型木结构剪力墙保温性能测试与分析 被引量:1
Test and Analysis of Thermal Performance of Shear Wall of Light Timber Structure
文献类型:期刊文献
中文题名:轻型木结构剪力墙保温性能测试与分析
英文题名:Test and Analysis of Thermal Performance of Shear Wall of Light Timber Structure
作者:徐明[1,2] 黄俣劼[3] 叶琦[1] 王正[3] 龚迎春[1] 梁坚坤[4]
第一作者:徐明
机构:[1]中国林业科学研究院木材工业研究所,北京100091;[2]北京市科学技术研究院城市安全与环境科学研究所,北京100054;[3]南京林业大学,江苏南京210007;[4]凯里学院,贵州凯里556000
年份:2023
卷号:60
期号:1
起止页码:26-32
中文期刊名:林产工业
外文期刊名:China Forest Products Industry
收录:CSTPCD;;北大核心:【北大核心2020】;
基金:浙江省省院合作林业科技项目“高强度人工林杉木工程木产品制造关键技术”(2021SY09);贵州省林业局林业科学技术研究项目“杉木木结构焊接技术研究及应用”(黔林科合[2020]C14号)。
语种:中文
中文关键词:木结构建筑;剪力墙;保温性能;传热系数;数值模拟
外文关键词:Timber structure building;Shear wall;Thermal insulation performance;Heat transfer coefficient;Numerical simulation
分类号:TS653
摘要:以国内首栋六层梁柱框架-轻型木结构剪力墙——山东鼎驰木业有限公司研发大楼为研究对象,对其一楼质检部墙体A与二楼仓库墙体B的传热系数进行测定分析。热流计分别呈横向与纵向布置,分别采取空调加热和电暖器加热,测试不同部位墙体的保温隔热性能;参照标准GB 50176—2016计算墙体理论传热系数;采用Abaqus软件对墙体传热系数进行模拟并对墙体内部温度与热流密度分布展开分析。研究结果表明:墙体A(横向)与墙体A(纵向)的平均传热系数分别为0.463、0.465 W/(m^(2)·K),墙体B的平均传热系数为0.374 W/(m^(2)·K),均达到了寒冷地区甲类公共建筑外墙标准;各测点传热系数实测值有一定差异,墙体保温性能不均匀,受施工条件与结构形式影响较大;墙体传热系数的理论结果与数值模拟结果分别为0.238 W/(m^(2)·K)和0.233 W/(m^(2)·K);保温层墙骨柱区域热流密度相比于保温棉区域显著提高,墙骨柱处易形成热桥,导致热流量和传热系数大幅上升,保温隔热性能下降。
In this paper,the research and development building of Shandong Dingchi Wood Industry Co.,Ltd.,the first six-story beam-column frame-light timber structure shear wall in China,was taken as the research object and the heat transfer coefficient of wall A of quality inspection department on the first floor and wall B of warehouse on the second floor are measured and analyzed.The heat flow meter was arranged in transverse and longitudinal directions respectively,and the heat insulation performance of different parts of the wall was tested by air conditioning heating and electric heater heating respectively.The theoretical heat transfer coefficient of wall was calculated according to GB 50176—2016.Abaqus software was used to simulate the heat transfer coefficient of the wall and analyze the distribution of temperature and heat flux inside the wall.The results showed that the average heat transfer coefficients of wall A(transverse)and wall A(longitudinal)were 0.463 W/(m^(2)·K)and 0.465W/(m^(2)·K)respectively,and the average heat transfer coefficients of wall B were 0.374 W/(m^(2)·K),both of which meet the external wall standards of class A public buildings in cold areas.The measured value of heat transfer coefficient of each measuring point was different,and the wall insulation performance was not uniform,which was greatly affected by construction conditions and structural forms.The theoretical and numerical results of wall heat transfer coefficient were 0.238 W/(m^(2)·K)and 0.233 W/(m^(2)·K)respectively.Compared with the insulation cotton area,the heat flow density of the wall and bone column area of the insulation layer was significantly higher,and the heat bridge was easily formed at the wall and bone column,which led to the significant increase of heat flow and heat transfer coefficient,and the thermal insulation performance decreases.
参考文献:
正在载入数据...