详细信息
Evolutionary Position and Leaf Toughness Control Chemical Transformation of Litter, and Drought Reinforces This Control: Evidence from a Common Garden Experiment across 48 Species ( SCI-EXPANDED收录) 被引量:12
文献类型:期刊文献
英文题名:Evolutionary Position and Leaf Toughness Control Chemical Transformation of Litter, and Drought Reinforces This Control: Evidence from a Common Garden Experiment across 48 Species
作者:Pan, Xu[1,2,3] Song, Yao-Bin[1] Jiang, Can[1] Liu, Guo-Fang[3] Ye, Xue-Hua[3] Xie, Xiu-Fang[1,3] Hu, Yu-Kun[1,3] Zhao, Wei-Wei[3,4] Cui, Lijuan[] Cornelissen, Johannes H. C.[4] Dong, Ming[1,3] Prinzing, Andreas[5]
第一作者:潘旭;Pan, Xu
通信作者:Dong, M[1]
机构:[1]Hangzhou Normal Univ, Coll Life & Environm Sci, Key Lab Hangzhou City Ecosyst Protect & Restorat, Hangzhou, Zhejiang, Peoples R China;[2]Chinese Acad Forestry, Inst Wetland Res, Beijing, Peoples R China;[3]Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China;[4]Vrije Univ Amsterdam, Fac Earth & Life Sci, Dept Ecol Sci, Syst Ecol, NL-1081 HV Amsterdam, Netherlands;[5]Univ Rennes 1, CNRS, Res Unit Ecobio, F-35042 Rennes, France
年份:2015
卷号:10
期号:11
外文期刊名:PLOS ONE
收录:;Scopus(收录号:2-s2.0-84958230829);WOS:【SCI-EXPANDED(收录号:WOS:000365153400044)】;
基金:This work was supported by the NSFC (Grant 31261120580, 31400346) and the Innovative R & D grant (201203) from Hangzhou Normal University. This work was also funded by China Postdoctoral Science Foundation funded project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
语种:英文
摘要:Plant leaf litter is an important source of soil chemicals that are essential for the ecosystem and changes in leaf litter chemical traits during decomposition will determine the availability of multiple chemical elements recycling in the ecosystem. However, it is unclear whether the changes in litter chemical traits during decomposition and their similarities across species can be predicted, respectively, using other leaf traits or using the phylogenetic related-ness of the litter species. Here we examined the fragmentation levels, mass losses, and the changes of 10 litter chemical traits during 1-yr decomposition under different environmental conditions (within/above surrounding litter layer) for 48 temperate tree species and related them to an important leaf functional trait, i.e. leaf toughness. Leaf toughness could predict the changes well in terms of amounts, but poorly in terms of concentrations. Changes of 7 out of 10 litter chemical traits during decomposition showed a significant phylogenetic signal notably when litter was exposed above surrounding litter. These phylogenetic signals in element dynamics were stronger than those of initial elementary composition. Overall, relatively hard-to-measure ecosystem processes like element dynamics during decomposition could be partly predicted simply from phylogenies and leaf toughness measures. We suggest that the strong phylogenetic signals in chemical ecosystem functioning of species may reflect the concerted control by multiple moderately conserved traits, notably if interacting biota suffer microclimatic stress and spatial isolation from ambient litter.
参考文献:
正在载入数据...