登录    注册    忘记密码

详细信息

机载LiDAR和高光谱融合实现普洱山区树种分类     被引量:27

Merged Airborne Li DAR and Hyperspectral Data for Tree Species Classification in Puer's Mountainous Area

文献类型:期刊文献

中文题名:机载LiDAR和高光谱融合实现普洱山区树种分类

英文题名:Merged Airborne Li DAR and Hyperspectral Data for Tree Species Classification in Puer's Mountainous Area

作者:刘怡君[1] 庞勇[2] 廖声熙[1] 荚文[2] 陈博伟[2] 刘鲁霞[2]

第一作者:刘怡君

机构:[1]中国林业科学研究院资源昆虫研究所;[2]中国林业科学研究院资源信息研究所

年份:2016

卷号:29

期号:3

起止页码:407-412

中文期刊名:林业科学研究

外文期刊名:Forest Research

收录:CSTPCD;;Scopus;北大核心:【北大核心2014】;CSCD:【CSCD2015_2016】;

基金:国家高科技研究发展计划(2012AA12A306);国家重点基础研究发展计划(2013CB733406)

语种:中文

中文关键词:树种分类;激光雷达;高光谱;数据融合

外文关键词:LiDAR;hyperspectral image;data fusion;classification of tree species

分类号:S771.8

摘要:[目的]通过机载遥感影像对普洱山区进行植被分类研究,为山区森林经营规划与可持续经营方案的制图提供高效应用途径。[方法]将2014年4月航拍的机载AISA Eagle II高光谱和Li DAR同步数据融合,利用点云数据提取的数字冠层高度模型(CHM)得到树种的垂直结构信息,结合经过主成分分析(PCA)的高光谱降维影像,选用支持向量机(SVM)分类器进行分类。[结果]普洱市万掌山实验区主要树种分为思茅松、西南桦、刺栲、木荷等。融合影像数据分类的总体精度和Kappa系数分别为80.54%、0.78,比单一高光谱影像数据分类精度分别提高6.55%、0.08,其中主要经营树种思茅松的制图精度达到了90.24%。[结论]该方法对山区主要树种的识别是有效的,将机载Li DAR与高光谱影像融合可以有效改善分类精度。
Objective]To classify the tree species in Puer’s mountainous area by remote sensing image,and to search an efficient way to forest management planning.[Method]The AISA Eagle II hyperspectral data and air-borne LiDAR taken in April of 2014 were merged,and based on Canopy Height Model (CHM)derived from air-borne LiDAR point cloud data,the vertical structure data of target species were obtained.Then,the Principal Com-ponent Analysis (PCA)transformation was used to reduce the noise and dimension of hyperspectral image.Finally, the Support Vector Machine (SVM)approach was used to classify the main tree species of Pu’er city.[Result](1 ) The main tree species of Puer are Pinus kesiya Royle ex Gord.var.langbianensis (A.Chev.)Gaussen,Betula al-noides Buch.-Ham.ex D.Don,Castanopsis hystrix A.DC,Schima superba Gardn.et Champ and so on.(2)It showed that the total accuracy and kappa coefficient are 80.54%,and 0.78,which are 6.55% and 0.08 higher compared with the classification accuracies without CHM.The mapping accuracy of the main tree species reached as high as 90.24%.[Conclusion]It is proved that this method is feasible for the identification of tree species in mountainous areas,and is a feasible way to improve total accuracy with merged LiDAR and hyperspectral data.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心