登录    注册    忘记密码

详细信息

Insights of Molecular Mechanism of Xylem Development in Five Black Poplar Cultivars  ( SCI-EXPANDED收录)   被引量:14

文献类型:期刊文献

英文题名:Insights of Molecular Mechanism of Xylem Development in Five Black Poplar Cultivars

作者:Zhang, Lei[1] Liu, Bobin[2] Zhang, Jin[3] Hu, Jianjun[1]

第一作者:张雷

通信作者:Hu, JJ[1];Zhang, J[2]

机构:[1]Chinese Acad Forestry, Res Inst Forestry, State Key Lab Tree Genet & Breeding, Key Lab Tree Breeding & Cultivat Natl Forestry &, Beijing, Peoples R China;[2]Fujian Agr & Forestry Univ, Coll Forestry, Fuzhou, Peoples R China;[3]Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA

年份:2020

卷号:11

外文期刊名:FRONTIERS IN PLANT SCIENCE

收录:;Scopus(收录号:2-s2.0-85086375630);WOS:【SCI-EXPANDED(收录号:WOS:000542173100001)】;

基金:This research was supported by the National Key Research and Development Program of China (2017YFD0600201), National Non-profit Institute Research Grant of CAF (CAFYBB2017ZY008), and National Key Program on Transgenic Research (2018ZX08020002) to JH and the National Natural Science Foundation of China (31870661) to BL.

语种:英文

外文关键词:Populus; developing xylem; transcriptome; cell wall; transcriptional regulation

摘要:Black poplar (Populus deltoides,P. nigra, and their hybrids) is the main poplar cultivars in China. It offers interesting options of large-scale biomass production for bioenergy due to its rapid growth and high yield. Poplar wood properties were associated with chemical components and physical structures during wood formation. In this study, five poplar cultivars,P. euramericana'Zhonglin46' (Pe1),P. euramericana'Guariento' (Pe2),P. nigra'N179' (Pn1),P. deltoides'Danhong' (Pd1), andP. deltoides'Nanyang' (Pd2), were used to explore the molecular mechanism of xylem development. We analyzed the structural differences of developing xylem in the five cultivars and profiled the transcriptome-wide gene expression patterns through RNA sequencing. The cross sections of the developing xylem showed that the cell wall thickness of developed fiber in Pd1 was thickest and the number of xylem vessels of Pn1 was the least. A total of 10,331 differentially expressed genes were identified among 10 pairwise comparisons of the five cultivars, most of them were related to programmed cell death and secondary cell wall thickening.K-means cluster analysis and Gene Ontology enrichment analysis showed that the genes highly expressed in Pd1 were related to nucleotide decomposition, metabolic process, transferase, and microtubule cytoskeleton; whereas the genes highly expressed in Pn1 were involved in cell wall macromolecule decomposition and polysaccharide binding processes. Based on a weighted gene co-expression network analysis, a large number of candidate regulators for xylem development were identified. And their potential regulatory roles to cell wall biosynthesis genes were validated by a transient overexpression system. This study provides a set of promising candidate regulators for genetic engineering to improve feedstock and enhance biofuel conversion in the bioenergy cropPopulus.

参考文献:

正在载入数据...

版权所有©中国林业科学研究院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心